

DNA methylation analysis as a tool to bridge the phenotype gap

Jörg Tost, Ph.D.

Group Leader Epigenetics

tost@cng.fr

Evry, 12.5.2009

DNA based variations

Genetic variations

Epigenetic variations

The case of the missing heritability

Concordance rate of complex diseases in monozygotic twins

Breast cancer 15 %

Ulcerative colitis
20 %

Multiple sceloris 25-30 %

■ T2 diabetes 25-45 %

Schizophrenia 50 %

Alzheimer's disease 40-70 %

Epigenetics

....is the study of a set of reversible heritable changes in gene function or other cell phenotypes that occur without a change in DNA sequence.

Epigenetics mediated by

- Polycomb / thritorax complexes
- snRNA (siRNA, miRNA and asRNA)
- Histone tail modifications
- Histone variants and nucleosomal occupancy
- DNA methylation

Environmental factors inducing DNA methylation changes

- Age
- Food (Agouti mouse model)
- Xenobiotic chemicals
- Endocrine disruptors (Vinclozin, Diethylstilberol)
- Maternal stress and nurturing
- Low dose radiation
- Smoking (lung cancer)

DNA methylation in disease

- Cancer
- Complex disorders
 - Type 2 Diabetes
 - Autoimmune diseases
 - Asthma ????
- Imprinting disorders / rare pediatric syndromes
 - Beckwith-Wiedemann syndrome
 - Silver Russel syndrome
 - Prader-Willi syndrome
 - Angelman syndrome
- Neurodevelopmental disorders
 - Fragile X
 - ICF
 - Rett syndrome

Aberrant methylation pattern

...but no black and white situation

Why study DNA methylation

- Amplifiable
- Stable over time and over cell cycle
- Applicable to FFPE samples
- Positive signal
- Ratio C/T independent of starting material
- Confers an advantage to cells

DNA methylation and cancer

- Early diagnosis
- Cancer subtype classifcation
- Response to treatment
- Prognostic biomarker
- Monitoring of treatment

DNA methylation techniques

Global DNA methylation levels

Regional DNA methylation levels

Enzymatic regional methylation assay MS-single strand conformation analysis Denaturing HPLC Capillary electrophoresis Fluorescence melting curve analysis

DNA methylation analysis by sequencing

Direct Sanger sequencing
Cloning and Sanger sequencing
Pyrosequencing
MALDI based sequencing/fragmentation

HPLC,TLC

(Fluorescent) Capillary electrophoresis Mass spectrometry Methyl acceptor assay Cytosine extension assay Luminometric methylation assay Chloracetaldehyde reaction

Antibody based in situ detection

Detection of specific methylation patterns

Methylation-specific PCR (MSP) Real-time MSP Methyl.ight QAMA HeavyMethyl Headloop PCR

Genome-wide analysis of DNA methylation

Methylation reversal approach
Differential Methylation Hybridization
MS-AFLP, MIAMI, HELP
MSNP
MS-AP-PCR/MSRF
MS-RDA, MCA-RDA, AIMS
RLGS
MeDIP, MIRA, MBD columns
MSO

Individual CpG analysis

Southern blotting Restriction digest PCR COBRA MS-SNuPE MethylQuant Bead array

Platforms at CNG

- Analysis of gene-specific DNA methylation patterns:
 - Pyrosequencing
 - Real-Time PCR
 - High-resolution melting analysis
 - Mass spectrometry
- Genome-wide analysis of DNA methylation patterns:
 - NimbleGen
 - Illumina (Bead Array/Infinium)
 - Illumina/Solexa sequencing

Illumina Bead Array Methylation analysis

Illumina Golden Gate Methylation Cancer Panel

91 MicMa tumors 4 Normal breast tissue

1505 CpG sites in 800 selected cancer related genes Filtering: use all datapoints with p<0.01 for β-value (1299 CpG sites) use only CpG sites with data in more than 90% of the samples Hiarchical clustering of 1061 CpG sites

69 genes significantly associated with overall breast cancer survival using SAM 10 genes with p<0.001

Example 1, Overall survival

Example 2, Overall survival

Integrate methylation and mRNA expression data

Significant corrrelations between methylation and expression (in cis)

Epigenetics of complex disease

The beginning of an era....

Epigenetics constitutes a new framework for the integration of previously unrelated molecular, epidemiological and clinical data

Placental pathologies: *SERPINA3* as a marker for pre-eclampsia

Methylated DNA immunoprecipitation (MeDIP)

Automation of Immunoprecipitation

Magnet of the robot

MeDIP – MEFs NimbleGen Promoter-CpG island tiling array (385k)

Batman-calibrated data using five experiments per phenotype

lgf1

Functional importance validated by expression analysis (8.5 fold)

Acknowledgments

Centre National de Génotypage, Evry (CEA – IG)

The Epigenetics Laboratory:

- Florence Busato
- Emelyne Dejeux
- Sven Michel

- Jennifer Sengenes
- Marion Baudry
- Magalie de Surville

- Simon Heath
- Mark Lathrop

Collaborators:

- Michael Kabesch (Medizische Hochschule Hannover)
- EFRAIM and GABRIEL collaborators, Erika von Mutius (München)
- Vessela Kristensen, Anne-Lise Borresen Dale (Radium Hospital Oslo, Norway)
- Hélène Jammes, Daniel Vaiman (INSERM U709, Hopital Cochin, Paris)

Further reading:

