

Apports du RNA-seq dans l'analyse des génomes orphelins

Véronique Brunaud et Etienne Delannoy Colloque EPGV 25 juin 2014, Evry

Transcriptome analysis

Exploration

Quantification

	C1		C2		C3		C4	
AGI	Rat	Pval	Rat	Pval	Rat	Pval	Rat	Pval
AT1G18980	1,37	0,00E+00			0,94	4,70E-07		
AT1G23720	1,33	0,00E+00	1,18	1,11E-10	1,25	0,00E+0 0		
AT1G52690	2,53	0,00E+00			1,24	0,00E+0 0		
AT1G58270	1,52	0,00E+00	0,87		1,20	0,00E+0 0		
AT1G62570	1,44	0,00E+00						
AT 2G 25625	1,45	0,00E+00						
AT2G33790	1,73	0,00E+00			1,10	1,09E-10		
AT2G39800	1,06	0,00E+00					-1,10	0,00E+00
AT2G46680	1,47	0,00E+00						
AT2G47770	2,06	0,00E+00			0,92	9,985-07		
AT3G02480	2,91	0,00E+00			1,50	0,00E+0 0		
AT3G15670	1,89	0,00E+00			0,87			
AT 3G 28550	1,16	0,00E+00			0,86	1,885-05		
AT3G50970	2,06	0,00E+00	1,52	0,00E+0 0	1,79	0,00E+0 0	0,82	6,905-07
AT 3G 53980	1,07	0,00E+00			0,75	1,86E-03	-0,73	9,73E-05
AT3G54580	1,55	0,00E+00			1,27	0,00E+0 0		
AT4G11340	1,06	0,00E+00						
AT4G35770	-3,60	0,00E+00	-2,09	0,00E+0 0	-2,84	0,00E+0 0		
AT5G06760	2,17	0,00E+00			1,08	2,685-10		

List of differentially expressed genes

RNA-Seq and transcriptome exploration

Gene discovery (genome annotation, homologous genes, phylogeny...)

Transcript variants (splicing, editing, SNP...)

No prior genome sequence required

Single nucleotide resolution

Allele expression

3964001	3966001	3968001	3970001	3972001	3974000
3974001	3976001	3978001		3982001	3984000
3984001	3995001	3988001	3990001	3992001	3994000
3994001	3996001	3999001	4000001	4002001	4004000
4004001	4008001	4009001	4010001	4012001	4014000
4014001	4016001	401a001	4020001	4022001	4024000
4024001	4026001	4028001	4030001	4032001	4034000
4034001	4036001	4039001	4040001	4042001	4044000
4044001	4046001	4043001	4050001	4052001	4054000
4054001	4058001	4058001	4090001	4052001	4064000

RNA-Seq vs DNA-Seq

Flagdb snapshot: 100kb from chr 9 of P. trichocarpa

Small sequencing depth required to cover the transcriptome compared to the full genome

Assembly, key step of the RNA-Seq analysis

Thousands of expected mRNA gene models

Arabidopsis thaliana Pipeline set up

Quality and efficiency of Assembly on Arabidopsis genome

- + defined new gene models
- Assembly: not perfect, defined kmer, time and memory consuming

Assembly method and quality

F1_Mplex				
Nb of PE reads	43 030 388 PE			
Nb of contigs	33 736			
	(length mean 1360)			
Nb of mapped contigs	33 072			
Genome TAIR10	98%			
(FLAGdb++)				

Data from Illumina HiSeq2000

- Velvet/oases (kmer 61,71)
- iAssembler

Assembly and comparison of annotations TAIR10 versus Contigs

F1_N	/Iplex	Data from Illumina HiSeg2000		
Nb of PE reads	43 030 388 PE	 Velvet/oases (kmer 61,71) 		
Nb of contigs	33 736 (length mean 1360)	• iAssembler		
Nb of mapped contigs Genome TAIR10	33 072 98%			
Comparaiso	n annotations			
Nb tagged Genes Nb contigs	17 783 32 220 (97%)	-→Gene=Locus		
Nb of genes with confirmed structure	15 613 (88%)	→ Model of genes with confirmed exon/intron structure		
Nb Contigs	20 881 (65%) contigs			

- → Good quality : 98% of contig mapped against genome
- \rightarrow 35% "new contigs"

Assembly Challenges

Oriented /non oriented

Contigs without Gene annotations

 \rightarrow 3% of contigs from assembly are not associated with gene annotations **Genes characteristics:**

- \rightarrow genes are shorter (mean contig length : 650 instead of 1360)
- \rightarrow matching with otherRNA, TE, ESTs

Quality of Assembly : contig versus gene annotation

35% of contigs with other gene models

1 gene – 1 or n contigs with other gene models

3% of contigs with no annotated genes

Sequencing Depth

- 1776 additional genes tagged with 200 millions of reads can be detected
- But equivalent results with the 40 millions depth with an more efficient assembly (smaller kmer)

Conclusion on assembly

- \rightarrow A good quality of contigs, efficient to detect new gene models
- → Problems: distinct false/good gene models, chimera that increase with read number
- → Improving Assembly tools (PE, oriented,

Other challenges: getting RNAs

ANR MAGNIPHY (Hervé SAUQUET, Orsay): Floral diversity of Magnoliidae Magnoliidae = 4 orders / 20 families / 270 genera / 10,000 species

20 floral transcriptomes for phylogenomics and Evo-Devo

Other challenges: getting RNAs

Species

Chimonanthus praecox Glossocalyx longicuspis Aristolochia clematitis Piper umbellatum Magnolia maudiae Aristolochia arborea

Family Calycanthaceae Siparunaceae Aristolochiaceae Magnoliaceae Aristolochiaceae

Origin Orsay (360) Mt Cameroon Orsay (360) Mt Cameroon Orsay (360) BG Vienna

No universal RNA extraction protocol

Not always possible to extract RNAs immediately

Degraded or partially degraded RNAs...

New sampling maybe necessary....

Assembly \rightarrow 16000 with corresponding contigs genes with low expression

Common Bean: annotation of the NBS-LRR genes (Valérie Geffroy, Orsay)

770 M reads from flowers, buds, stem, roots, leaves, seed pods (11 samples)

32180 contigs with N50 = 1719bp

Whole transcriptome coverage: 57% of the predicted genes covered at more than 50%

NBS-LRR coverage: 428 predicted genes22 genes covered at more than 50%249 covered by at least one contig.....

Very low expression level

Solutions:

Normalised cDNA libraries,

Choice of the samples,

Multiplying samples.....

Other challenges: polymorphism

Assembly softwares very sensitive to polymorphism

Technical "polymorphism" = sequencing errors

	Proton	Hiseq
read Nb	55384478	52161156
velvet kmer=61		
contig Nb	213178	22316
N50	265	1508
Median cov depth	7.8	23
using reads	10271478 (18%)	39302128 (75%)

Natural polymorphism: heterozygocy and polyploidy How to adjust assembly parameters??

Other challenges: polymorphism

SPAM project (Sophie Nadot, Orsay) Floral transcriptom of *Grevillea rosmarinifolia*

200M pairs of reads \rightarrow 48000 contigs with N50 = 750

Identification of "floral morphology" gene homologs:

Agamous, Pistillata, Wuschel, Crabsclaw, Cup-Shaped Cotyledon, Shootmeristemless, Spatula, Bel1, Tousled, Apetala (3 contigs), Sepallata (4 contigs), Cycloidea (2 contigs). → successful!

RNA-Seq for the study of orphan genomes

Powerful tool through focused sequencing of the "active " part of the genomes (\rightarrow partial analysis of the genome)

The availability of a sequenced genome is not required but it allows a much easier analysis and interpretation of the RNA-Seq data.

Acknowledgments

Bioinformatics and predictive genomics

Philippe Grevet Cécile Guichard Zakia Tariq Jean-Philippe Tamby Rim Zaag Marie-Laure Martin-Magniette

Common Bean

Vincent Thareau Valérie Geffroy

A

Magniphy

Julien Massoni Véronique Normand **Hervé Sauquet**

SPAM

Transcriptomic

Rémi Bounon

José Caius

Stéphanie Huguet

Cécile Labrune

Stéphanie Pateyron

Ludivine Soubigou-Taconnat Jennifer Yansouni

Claire Lurin

Sandrine Balzergue

RA

platform

