

Genotypic data densification for genomic selection in the black poplar

Thesis director : Léopoldo SANCHEZ, Supervisor : Véronique JORGE

Three main questions

Thesis project focus on best way to implement genomic evaluation in the French black poplar breeding program with three main questions

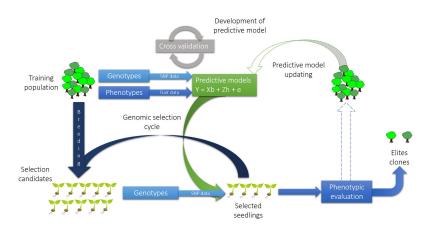
- 1. How to improve the prediction of crosses performance?
- 2. How best manage the genetic diversity?
- 3. How and where to integrate genomic evaluation in a breeding program to increase genetic gain?
- \Rightarrow This study deals with the first question by providing a first assessments of the high density genotype imputation accuracy in a factorial mating design

Main species of the riparian forest

Wide distribution area

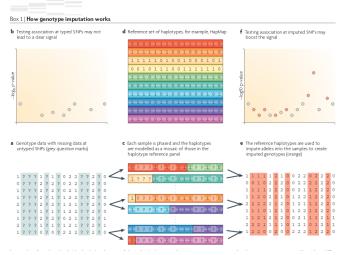
P. deltoides

P. nigra


One of the most used trees in wood industry

monoclonal plantations

Fast-growing tree



What is genotype imputation?

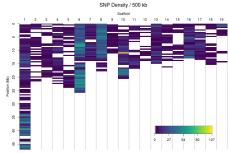
Marchini et Howie (2010) Genotype imputation for genome-wide association studies (Nature reviews)

Material & Methods

Material & Methode : Factorial mating design

	SRZ	BDG	71077-308	
VGN-CZB25	52	49 & 2	48	Sequenced & genotyped
71041-3-402		22	10	genotyped
71072-501	21	28	29	

Indivisuals	Coverage
SRZ	10X
BDG	57X
71077-308	17X
VGN-CZB25	15X
71041-3-402	5X
71072-501	1X
662200037	6X
66220216	4X


2 636 075 detected variant \Rightarrow We try to impute 97% of genotyping data

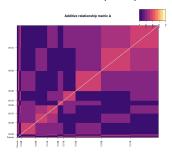
Material & methods : Genotypic Data

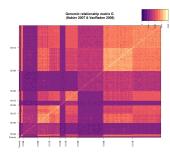
Infinium BlackPoplar 10 332 SNP (Faivre-Rampant et al., 2016)

- ▶ non homogeneous marker density (denser candidate regions)
- ▶ 8259 SNPs available, several filters have been applied and :
 - ▶ Markers with more than 90% of missing data
 - Monomorphic markers
 - Not consistent markers after imputation
- ▶ 7755 markers remain
- ► Variable distribution on the 19 chromosomes
 - High density: 80 SNPs / Mb
 - Medium density : 20 SNPs /Mb
 - Low density : 5 SNPs / Mb

Material & methods : Sequence Data

Whole-genome re-sequencing was performed at the INRA-EPGV/CEA-IG/CNG using Hiseq 2000 Illumina platforms. Options are the same as Faivre-Rampant et al., 2016

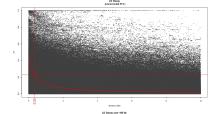

Import	Trimming	
 Performed with CLC workbench genomics 9.0 Distance between two paired-end reads = 250 and 800 bases Range of illumina quality score version 1,8 	 ▶ Performed with CLC workbench genomics 9.0 ▶ Phred score quality = 30 ▶ Small reads and ambigous sequences 	
Mapping	Variant detection	
Performed with CLC	► Performed with Freebayes	
workbench genomics 9.0	▶ min alternate count = 2	
Unique matches	▶ min alternate qsum = 40	
► Length fraction >= 0.9	genotype variant threshold2	
► Similarity >= 0.9		

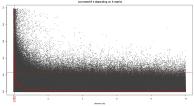


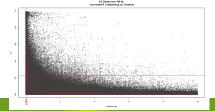
Material & Methode : Population Structure

The population structure via relatedness heatplot

- pedigree-based relationship matrix (A-matrix)
- marker-based genomic relationship matrix following Habier (2007) and VanRaden (2008) methods

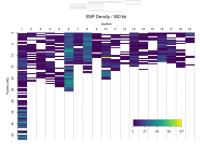


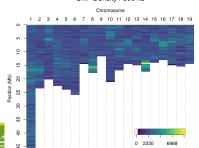


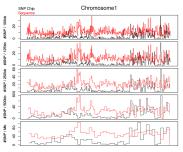

Material & Methode: Data description

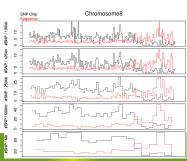
Linkage disequilibrium representation corrected by A and G (Mangin et al., 2012 & lin et al., 2012 . LD decay was modelized by Hill & Weir 1988 methods.

- ▶ 330 kb 1/2 LD decay without correction
- 50 kb 1/2 LD decay with A correction
- ▶ 40 kb 1/2 LD decay with G correction







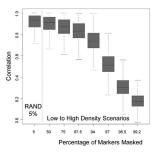

Material & Methode : SNP density

SNP Density / 500 kb

Material & Methode : FImpute

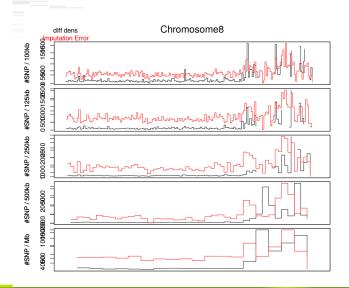
FImpute (Sargolzaei et al. 2014):

- mainly developed for large scale genotype imputation in livestock
- uses an overlapping sliding window approach to efficiently exploit relationships or haplotype similarities between target and reference individuals
- makes use of pedigree information for more accurate imputation mostly with low density panel
- Easy to used with control, genotype, pedigree, haplotype files



Preliminary results & Discussion

Results: Correlation between imputed genotypes and detected variants


	DV 662200037	DV 662200216
Imp with 1 FS	0.59	0.59
Imp with 0 FS	0.60	0.63

Hickey *et al.*, 2012 Factors Affecting the Accuracy of Genotype Imputation in Populations from Several Maize Breeding Programs

Results: Imputation errors

Conclusions & Propect

Conclusions

- ▶ This preliminary results are not accurate
 - Increase the number of cross-validation trying to impute each parent independently
 - ► Trying different densities to improve imputation accuracy
- ▶ Some adjustments are necessary

Prospect

- ► This pineplines will be used with an extend factorial mating design (25 sequences WGS)
- ► The impact of denser genotype information will be tested with predictions models
- Genotype imputation may allow to optimize genotyping efforts to decrease costs

Acknowledgment to

- Léopoldo Sanchez UR AGPF
- Véronique Jorge UR AGPF
- Catherine Bastien UR AGPF
- Marie-Christine Le Paslier US EPGV/CEA/CNG
- Patricia Faivre-Rampant US EPGV/CEA/CNG
- Odile Rogier UR AGPF
- Vincent Segura UR AGPF
- Facundo Munoz UR AGPF
- Support team EPGV/CEA/CNG

Thank you for your attention

