

Premiers résultats sur Pacific Bioscience SEQUEL

Véronique GAUTIER

Colloque EPGV Angers 5-7 Octobre 2016

GENTYANE: une équipe, des compétences

- 3 ingénieurs, 2 assistantes ingénieurs,
 2 +1 techniciennes (2017)
- Origine des postes : 100% des personnels affecté par le département INRA Biologie et Amélioration des Plantes
- Charles Poncet: manager plateforme
- Anthony Theron et Amélie Bertin : lE chargés de projet (CDD, Prest. Et R/D)
- Elodie Belmonte : Al chargée de projet (CDD)
- Véronique Gautier : AI RMQ et spécialiste NGS
- Lydia Jaffrelo: TR chargée de projets prestation génotypage
- Delphine Boyer : TR chargée de projets développement GDEC
- Chaque agent de l'équipe a en charge le pilotage d'un processus

Une plateforme multiservices

- Génotypage SNP (LC480, Fluidigm Biomark, Affymetrix Genetitan Axiom automatisée format 96 et 384 exclusivité Gentyane (service provider)
- Génotypage Microsatellites (ABI 3730XL)
- Séquençage Massif sur Illumina MiSeq et Pacific Bioscience Sequel (2016)
- Extractions automatisées d'ADN (3200/jour)chimie Sbeadex (plante) et Lifestock (animal) sur robot Oktopure
- Développement de méthodes en collaboration client

Séquenceur Pacific Bioscience Sequel

SEQUEL SYSTEM

Typical Performance

- Average read length: Comparable to PacBio RS II

- Consensus accuracy: Achieves QV50

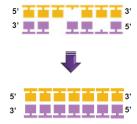
- Throughput per cell: ∼5 – 10 Gb

- SMRT Cells per run: 1 – 16

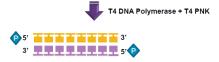
- Movie lengths: 30 minutes – 6 hours

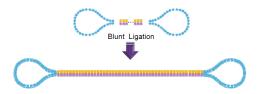
SMRT SEQUENCING PERFORMANCE

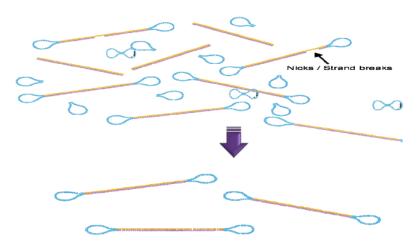
- Long read lengths
 - Produce average reads of 10 kb
 - Some reads >60 kb
- Uniform coverage
 - No DNA amplification
 - Least GC content and sequence complexity bias
- High Accuracy
 - Achieves >99.999% (QV50)
 - Lack of systematic sequencing errors
- Simultaneous epigenetic detection
 - Characterize epigenome
 - No separate sample preparation required


- Qualité/Quantité de l'ADN
 - Au moins 10µg d'ADN de haut poids moléculaire (proche de 50kb)
 - Sans contaminants (EDTA, détergents, dénaturants, sels, polyphenols...)
 - DO 260/280 entre 1,8 et 2
 - Extraction avec des kits type Macherey ou Qiagen (colonne)

- A partir d'ADN génomique
 - Fragmentation (non nécessaire pour les amplicons)
 - Covaris g-TUBE (> 6Kb)
 - Diagenode Megaruptor

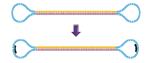



Réparation de l'ADN


• Réparation des extrémités 5' et 3' et phosphorylation des 5

• Fixation des adaptateurs aux 2 extrémités

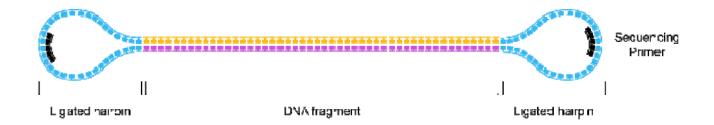
- Elimination des matrices imparfaites par le traitement à l'EXO III et EXO VII
 - Exonuclease III (from 3'-hydroxyl termini)
 - Exonuclease VII (from 5'-termini)



- Library is ready for primer annealing and polymerase binding
- Library can be stored at -20° C for several months

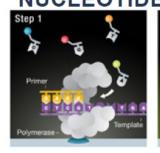
- Sélection de la taille des librairies à l'aide du Sage Science BluePippin
 - QC (Qubit+dépôt)

• Fixation des primers de sequençage (attention au ratio)



• Fixation de la polymérase sur les 2 extrémités des SMRTbell template (attention au ratio)

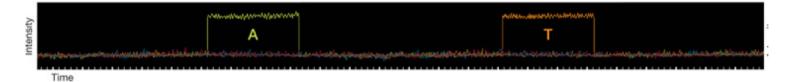
- Fixation des templates sur les MagBeads
- ..\.._\PacBio\Content Pack INRA CF\06 Presentations\MBS_v5_animation.mov


SMRT TECHNOLOGY TEMPLATE FORMAT

SMRTbell™ Template:

- Structurally linear
- Topologically circular
- Structural homogeneity of templates
- Provides sequences of both forward and reverse strands in the same sequence

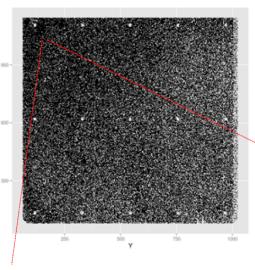
PROCESSIVE SYNTHESIS WITH PHOSPHOLINKED NUCLEOTIDES

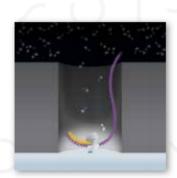


- **Step 1**: Phospholinked nucleotides are introduced into the zero-mode waveguide (ZMW)
- **Step 2**: The nucleotide is held in the detection volume for tens of milliseconds, fluoresces when excited by light. The captured light is converted into a base call with associated quality metrics
- **Step 3**: The polymerase incorporates the nucleotide, releasing the attached dye molecule
- Step 4-5: The process repeats

UNIVERSAL SMRTbell™ TEMPLATE

Standard Sequencing for Continuous Long Reads (CLR)

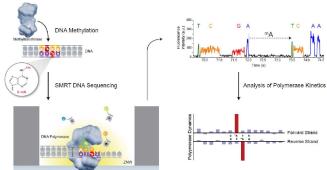

Read of Insert / Circular Consensus Sequencing (CCS)



Generates multiple passes on each molecule sequenced

SIGNAL PROCESSING AND BASE CALLING

Zero-Mode Waveguides

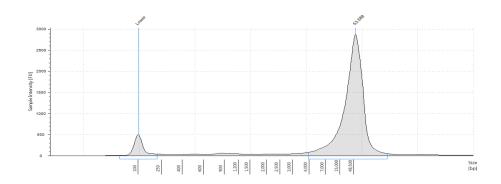

TTACCGGTAGGTACGGGTAAAATGCACCGTTTA

Convert pulses of light in real time into base calls and kinetic measures

Applications

- Séquençage de novo
- Séquençage ciblé:
 - Détection de SNP (possibilité de multiplexer jusqu'à 384 échantillons)
 - Iso-Seq[™] Full-Length Transcript Sequencing
- Epigénétique : détection des bases modifiées par la mesure des variations de la cinétique d'incorporation des bases

BASE MODIFICATION: DISCOVER THE EPIGENOME



Detect base modifications using the kinetics of the polymerization reaction during sequencing

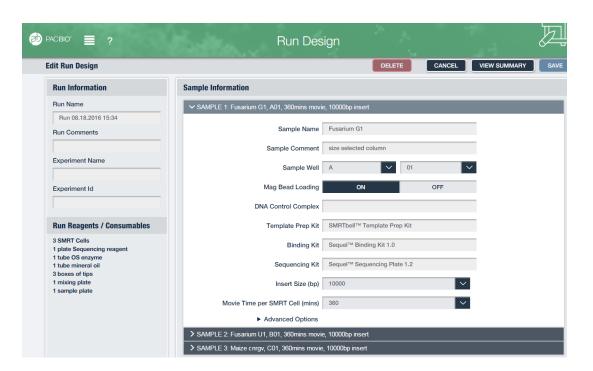
Premiers résultats

Préparation de librairies à partir d'ADNg de fusarium graminearum (fourni par l'équipe MDC GDEC) et de maïs (CNRGV Toulouse)

- ADN fusarium graminearum (Fg1)
 - Dosage au Qubit : 106 ng/µl
 - Dépôt sur Tape Station Agilent

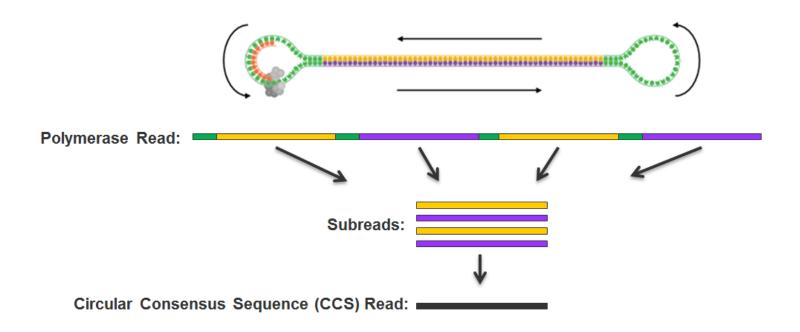
- Fragmentation à 10 kb
 - Nécessité de partir d'au moins 10 µg d'ADNg pour être sûr d'obtenir 5 µg après fragmentation avec les g-tubes Covaris et purification AMpure

Fusarium (Fg1)	10 µg
Fusarium (FU)	12 µg
Maïs	15 µg

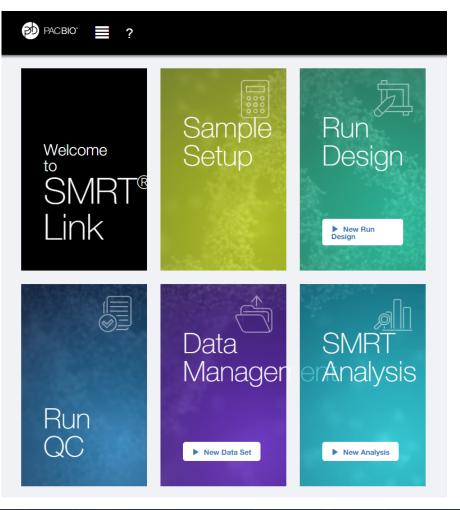

 Traitement exonucléase, réparation, ligation des adaptateurs, purification AMPure, puis sélection sur BluePippin avec un cut-off à 6 Kb

 QC TapeStation et dosage Qubit des différentes étapes

Etape	Fusariu	ım Fg1	Fusari	um FU	Mo	aïs
	Taille	Qtité µg	Taille	Qtité µg	Taille	Qtité µg
Fragmentation	10,6 Kb	10,4	12,3 Kb	13	13,2 Kb	18,6
Avant BluePippin	10,7 Kb	3,9	10,9 kb	4,8	11,7 kb	5,5
Après BluePippin	13,2 Kb	1,2	11,6 Kb	1,6	12,5 Kb	0,9
Librairie finale		1,12		1,02		0,78


Lancement du run

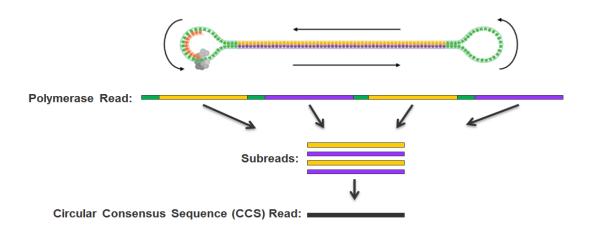
- 3 SMRTCell
- Durée du run : 360 minutes/SMRTCell
- Feuille de route : sur le portail SMRTLink



Analyse des runs : Hélène RIMBERT

Terminologie

• A partir de SMRTLink

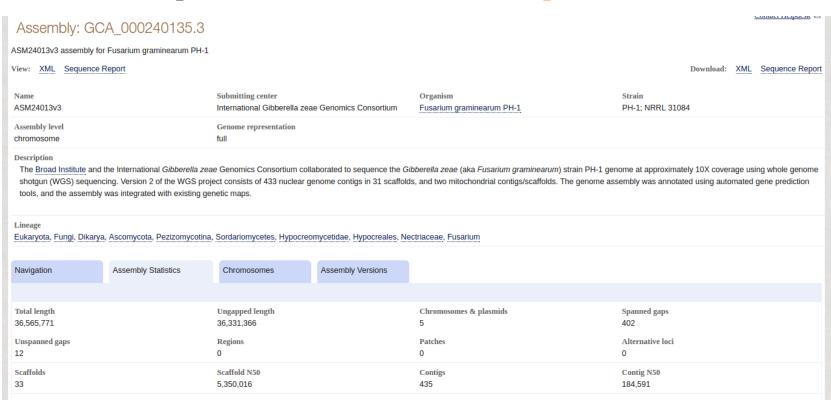

o QC

Sample	Fusarium G1	Fusarium U1	Maize CNRGV
Movie time	360	360	360
Total bases (GB)	3,85	3,72	3,41
Polymerase Read Length	7773	7985	6647
Insert Read Length	6186	5874	6032
Productivity P0*	50,60%	53,10%	49,90%
Productivity P1*	47,80%	44,90%	49,50%
Productivity P2*	1,60%	2,00%	0,60%

P0: The number and percentage of ZMWs that are empty, with no polymerase

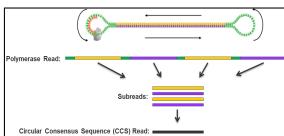
P1: The number and percentage of ZMWs that are productive and sequencing (30<P1 <40%)

P2: The number and percentage of ZMWs that are not P0 (empty) or P1 (productive). This may occur for a variety of reasons and the sequence data is not usable

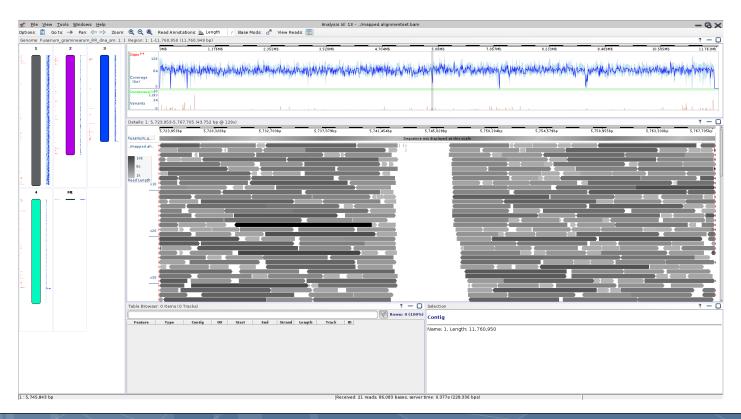

Analysis Metric	Fg1	Fu1	Maize CNRGV
Polymerase Read Bases	3 849 519 705	3 718 187 353	3 409 788 960
Polymerase Reads	495 231	465 671	512 950
Polymerase Read Length (mean)	7 773	7 985	6 647
Polymerase Read N50	12 750	13 250	10 250
Insert Length (mean)	6 186	5 874	6 032

▶Homogénéité des résultats

- Reséquençage de Fusarium (Fg1) :
- Séquence de référence : Fusarium graminearum PH-1


taille génome: 36 Mb 4 chromosomes + 1 chromosome mitochondrial

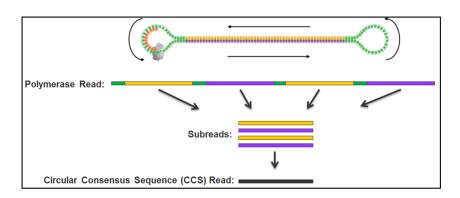
• (assembly GCA 000240135.3 http://www.ebi.ac.uk/ena/data/view/GCA 000240135.3)



• Resequencing for Fusarium G1: http://147.99.145.206:9090/#/analysis/job/13

Analysis Metric	Value	
Mean Mapped Concordance	0,83	► Quality value
Number of Subreads (mapped)	720493	
Number of Subread Bases (mapped)	3046929877	► soit 100X ≈ de couvertur
Subread Length Mean (mapped)	4229	
Subread Length N50 (mapped)	6159	
Subread Length 95% (mapped)	8590	
Subread Length Max (mapped)	31556	
Number of Polymerase Reads (mapped)	441271	
Polymerase Read Length Mean (mapped)	7064	
Polymerase Read N50 (mapped)	12361	
Polymerase Read Length 95% (mapped)	23030	
Polymerase Read Length Max (mapped)	46949	
Mean Coverage	74,37	(#B)
Missing bases (%)	4,22	

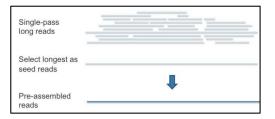
- Exemple du chromosome 1
- ► couverture globalement homogène avec des zones beaucoup moins bien couverte
- ► Mise en évidence d'une zone de chromosome non identique entre la référence et la souche Fg1 séquencée


• De novo Assembly HGAP4 Fusarium (FU):

Single-pass long reads

Select longest as seed reads

Pre-assembled reads



De novo Assembly HGAP4 Fusarium (FU):

- Pre-assembly results

Analysis Metric	Value	
Genome Length (user input)	40 000 000)
Number of Raw Reads	850 430	Subreads
Raw Read Length Mean	4 349,57	
Raw Read Length (N50)	6 136	
Raw Read Length 95%	8 861	
Number of Raw Bases (total)	3 699 007 729	
Raw Coverage (bases/genome_size)	92,48	
Length Cutoff (user input or auto-calc)	6 385	Seed reads : longes
Number of Seed Reads	142 378	single-pass long r
Seed Read Length Mean	8 430,22	representing 30x coverage.
Seed Read Length (N50)	8 018	00.01030.
Seed Read Length 95%	13 094	For our dataset, s
Number of Seed Bases (total)	1 200 278 397	length = 6385bp
Seed Coverage (bases/genome_size)	30,01	1,2Gb → 30x

De novo Assembly HGAP4 Fusarium (FU):

Analysis Metric	Value
Number of Pre-Assembled Reads	134 030
Pre-Assembled Read Length Mean	3 940,05
Pre-Assembled Read Length (N50)	5 286
Pre-Assembled Read Length 95%	7 715
Number of Pre-Assembled Bases (total)	528 084 331
Pre-Assembled Coverage (bases/genome_size)	13,20
Pre-Assembled Yield (bases/seed_bases)	44,00%

Pre-assembled reads:
obtained by mapping
single-pass reads to
seed reads

94 % of seed reads
pre-assembled

Single-pass long reads

Select longest as seed reads

Pre-assembled reads

De novo Assembly HGAP4 Fusarium (FU):

Résultats PacBio

génome référence (HiSeq2000)

Analysis Metric	Value	Analysis Metric	Value
Polished Contigs	310	Contigs	435
Maximum Contig Length	721 775	Maximum Contig Length	
N50 Contig Length	290 560	N50 Contig Length	184591
Sum of Contig Lengths	36 211 402	Sum of Contig Lengths	36 331 366

Conclusion

- Pour du séquençage de novo ou du reséquençage:
 - Préparation de la librairie : 3 jours
 - Quantité de ADNg nécessaire : mini 10 μg
 - Possibilité de passer plusieurs SMRTCell à partir d'une librairie
 - Analyse relativement presse-bouton avec SMRTlink
 - Résultats prometteurs à partir d'ADN de bonne qualité mais extrait classiquement pour Fusarium
 - Coût environ 2000€ HT / SMRTCell

Conclusion

- Pour du séquençage de novo ou du reséquençage:
 - Utilisation de la dernière chimie : P6 et protocole pour des fragments de 20kb
 - Chimie en constante évolution, P7 attendue pour fin 2016 : rendement attendu entre 5 et 10 Gb
 - Résultats pour fusarium obtenus à partir des réglages de base des logiciels d'assemblage et de reséquençage.
 - Pas de nettoyage préalable des datas brutes

Perspectives

- Après des tests très encourageants, évolution vers l'obtention de reads de plus grandes longueurs (shearing, évolution de la polymérase)
- Objectifs: 5 à 10 GB de reads (1Gb sur RS2) de 15-20kb par SMRTCell pour le premier trimestre 2017
- Projets de séquençage du Lupin blanc sur Sequel
- A venir : prochain user meeting PacBio fin novembre à Barcelone

Merci de votre attention