

minION- Application

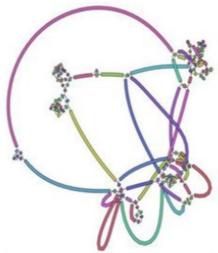
Franck Salin, Christophe Boury, Charlotte Mouden

Full comparison table							
	Flongle	MinION Mk 1B	GridION X5	PromethION (1 flow cell)	PromethION (48 flow cells)		
Read length	fragment length = read length. Longest read now >2 Mb						
Run time	1 min - 16 hrs	1 min - 48 hrs	1 min - 48 hrs	1 min - 64 hrs	1 min - 64 hrs		
Yield DNA sequencing							
Theoretical maximum 1D Yield	Up to 3.3 Gb	Up to 40 Gb	Up to 200 Gb	Up to 315 Gb	Up to 15 Tb		
Current yield range 1D	Early access to start ASAP - commercial target 1 Gb	Up to 30Gb (Rev D Chip)	Up to 150Gb (RevD Chip)	Up to 150 Gb			

Illumina vs. Nanopore

Illumina

Reads


- 100–250 bp reads, 300–1000 bp fragments (shorter than repeats)
- · Very accurate

Assemblies

- Fragmented
- Small N50: 10s-100s of kbp
- · Very accurate

Uses

- SNPs
- Phylogenetics
- · Specific alleles

MinION

Reads

- Wide length distribution, 20+ kbp common (longer than repeats)
- 90–95% accuracy

Assemblies

- Complete
- 98+% accuracy

Uses

- · Large-scale structure
- · Horizontal gene transfer

Louise Judd ANU Nanopore Workshop

Hybrid read sets

Illumina

AND

Reads

- 100–250 bp reads, 300–1000 bp fragments (shorter than repeats)
- Very accurate

Assemblies

- Fragmented
- Small N50: 10s–100s of kbp
- Very accurate

Uses

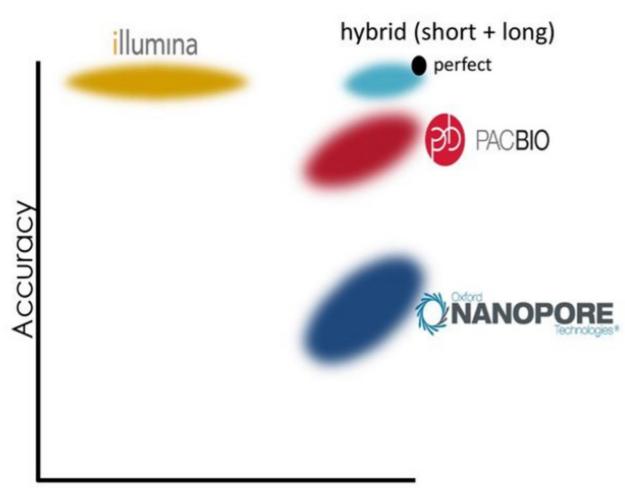
- SNPs
- Phylogenetics
- Specific alleles

Nanopore

Reads

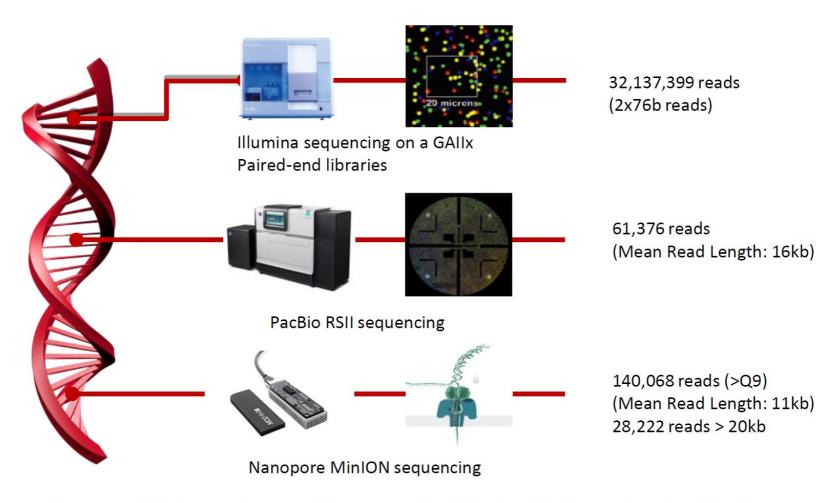
- Wide length distribution, 20+ kbp common (longer than repeats)
- 80–95% accuracy

Assemblies

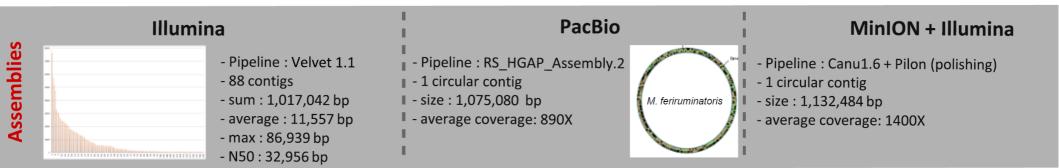

- Complete
- 98+% accuracy

Uses

- Large-scale structure
- · Horizontal gene transfer


cgfb 03/10/2018

Summary

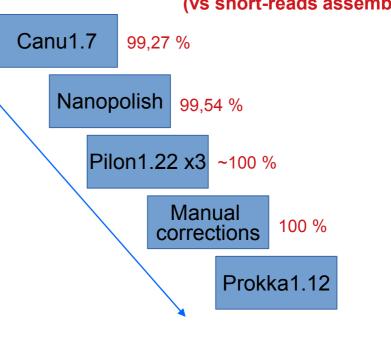

Completeness

Update du génome de *Mycoplasma feriruminatoris*

The genome of *M. feriruminatoris* sp. nov. G5847 was sequenced using Illumina and PacBio sequencing technologies at Lausanne Genomic Technologies Facility, CIG, Univ. Lausanne, Lausanne, Switzerland. ONT sequencing on MinION was achieved at the Bordeaux Sequencing facility (PGTB).

Update du génome de *Mycoplasma feriruminatoris*

Long reads >8000kb et >Q9 (9.4)

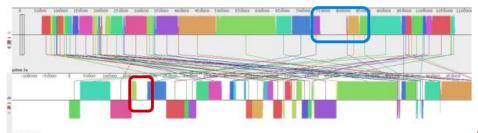

- 69.808 reads
- Longueur moyenne 19,932bp
 Couverture théorique >1000X

Short reads

- 61.376 reads
- 2x76bp reads

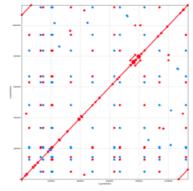
Précédente version (reads Illumina, assemblage Velvet)	Nouvelle version
88 contigs	1 contig circulaire
1,010,677 bp N50 32,956 bp	1,075,529 bp
907 gènes	948 gènes

Identité (vs short-reads assembly)



Update du génome de Mycoplasma feriruminatoris

MinION-based assembly vs PacBio-based assembly:


- > 100 % of the PacBio assembly matches the MinION assembly
- > MinION assembly is a bit longer

MinION/Illumina-based hybrid assembly vs Illumina-based assembly

All Illumina contigs map with the MinION contig, except 1 (red circled), corresponding to a duplicated region in the long read assembly (blue circled).

Results

Self-alignment of the MinION/Illumina-based hybrid assembly using showing a 35kb tandem duplication

Gene content of the 35kb duplicated region

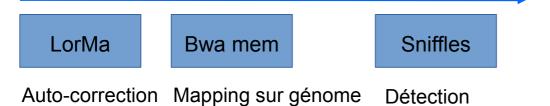
- > Region includes the recently described MIB-MIP genes
- > Shown to encode an Ig-binding and cleavage system (Arfi et al, 2016) and a mycoplasma specific ATPase derived from the F1F0 ATP synthase (Beven et al, 2012).
- > Both elements might be involved in the capacity of the mycoplasma to escape the host immune system.

References

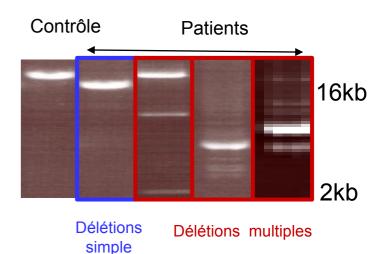
Arfi et al. MIB-MIP is a mycoplasma system that captures and cleaves immunoglobulin G.Proc Natl Acad Sci USA. 2016.

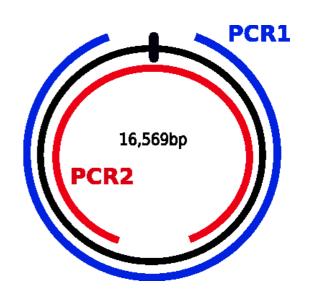
Beven et al. Specific evolution of F1-like ATPases in mycoplasmas. P.LoS One. 2012. Kurtz et al. Versatile and open software for comparing large genomes. Genome Biol. 2004. Darling et al. progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrange PLoS One. 2010.

hiyama et al. MBGD. Microbial Genome Database for Comparative Analysis. Nucleic Acids Res. 2003.

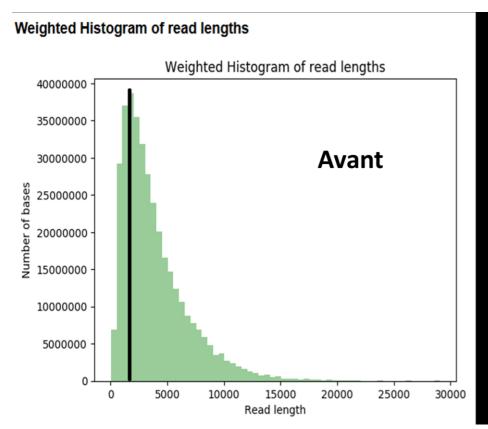

- Ingénierie génétique en cours basée sur cette nouvelle version de génome, en vue de la production d'un vaccin
- Les mutants issus de l'ingénierie seront vérifiés par assemblage de novo

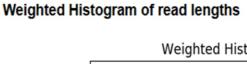
Caractérisation de grandes délétions du génome mitochondrial humain

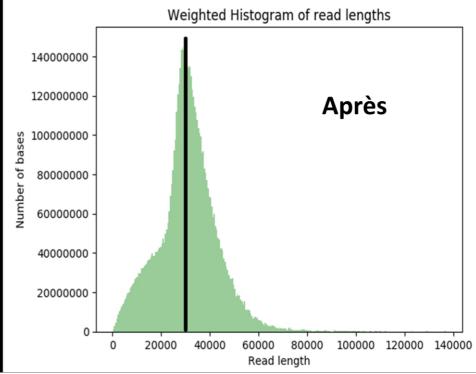

des variants


- Délétions complexes, pouvant être multiples au sein d'un même individu
- Responsables de pathologies mitochondriales
- Diagnostic basé sur électrophorèse de PCR long-range et NGS (PGM), mais points de cassures difficiles à identifier précisément
- → Séquençage des long range PCR en long read, grande profondeur (>4000X)

mitochondrial


- 7 points de cassures identifiés, 4 vérifiés par Sanger, les autres en cours
- Malgré le taux d'erreurs élevés, des haplogroupes ont peut être correctement identifiés à partir de SNPs, chez tous les individus passés (HaploGrep)





des reads

Ci-dessous un exemple illustratif de la différence de données de séquençage obtenues sur la PGTB avant et après l'optimisation d'un protocole d'extraction d'ADN (élimination des polysaccharides). Ce travail d'optimisation d'extraction de l'ADN a été effectué par Arthur Demené, doctorant de l'UMR Biogeco, sur le champignon pathogène du genre Castanea (*Cryphonectria parasitica*). Entre 15 et 20 fois plus de données ont été générées à partir de reads 10 à 15 fois plus longs.

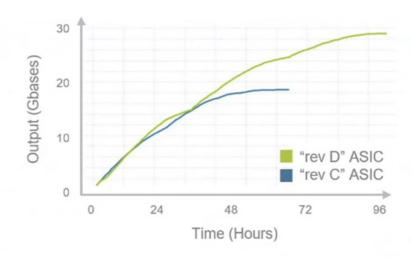
	Avant optimisation d'extraction d'ADN	Après optimisation d'extraction d'ADN
Gb générées	0,36	6,2
N50 (Kb)	3,1	31 (270 000 reads)
N90 (Kb)	1,04	14,9
Médiane de longueur de reads (Kb)	1,5	25
Quantité de reads au-delà de 50 Kb	0	6169

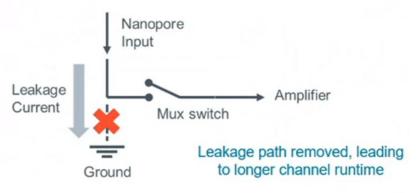
Données de séquençage des reads de qualité supérieure à Q9

NEW ASIC REVISION

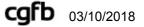
MinION and GridION "Rev D"

Enabling longer runtimes: Available Q3/4


Previous ASIC version:


- · Small current leakage path in "switched off" wells
- · Affected wells that were not being observed
- · Chemistry in wells was consumed, run time curtailed
- Approximately 20 % consumption vs active well

Improved ASIC ("rev Ds")


- Leakage path removed, no losses in other mux groups
- · Runtime of flow cell significantly increased

Remerciements:

UNRAVELING THE DUPLICATION OF A 35 KB BACTERIAL GENOMIC REGION INVOLVED IN IMMUNOGLOBULIN CLEAVAGE BY LONG READ SEQUENCING

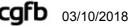
Christophe Boury1, Charlotte Mouden1, Franck Salin1, Erwan Guichoux1, Géraldine Gourgues2,3, Alain Blanchard2,3, Joerg Jores4, Carole Lartigue2,3 and Pascal Sirand-Pugnet2,3 1 PGTB, INRA, UMR BIOGECO, Univ. Bordeaux, Cestas, France, 2 INRA, UMR BFP, Villenave d'Ornon, France; 3 Univ. Bordeaux, UMR BFP Villenave d'Ornon, France; 4 Institute of Veterinary Bacteriology, Univ. Bern, Bern, Switzerland

Impact de la qualité de l'ADN sur le séquençage Oxford Nanopore

ArthurDemené,doctorant de l'UMRBiogeco,sur le champignon pathogène du genre Castanea (Cryphonectriaparasitica) ,Sandrine CROS-ARTEIL, INRA, Montpellier

Human mitochondrial DNA sequencing by Oxford Nanopore MinION

Aurélien Trimouille1,2, Charlotte Mouden3, Christophe Boury3, Armelle Courrèges4, Patricia Fergelot*1,2,5, Marie-Laure Martin-Négrier*4,6


- 1 CHU Bordeaux, Service de Génétique Médicale, F-33000 Bordeaux, France
- 2 Univ. Bordeaux, INSERM 1211, F-33000 Bordeaux, France
- 3 INRA, UMR Biodiversity of Genes and Ecosystems, Transcriptomics and Genomics Platform, Cestas, France
- 4 CHU Bordeaux, Service de Pathologie, F-33000 Bordeaux, France
- 5 Plateforme Génome Transcriptome, Centre de Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, Bordeaux, France.
- 6 Univ. Bordeaux, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France

